Lecture 5 – Sedimentary rocks Recap+ continued

and Metamorphic rocks!

Metamorphism

- Process that leads to changes in:
 - Mineralogy
 - Texture
 - Sometimes chemical composition
- Metamorphic rocks are produced from parent rocks, called "protoliths"

Metamorphic Character

- Metamorphic rocks have distinctive properties
 - Unique texture intergrown and interlocking grains
 - Unique minerals some minerals are <u>only</u> metamorphic
 - Unique foliation a planar fabric from aligned minerals
- These transformations can change the rock completely

- Metamorphic change occurs slowly in the solid state
- Several processes are at work:
 - 1. Recrystallization Minerals change size and shape

- Metamorphic change occurs slowly in the solid state
- Several processes are at work
 - 2. Phase change New minerals with different structureExample: Andalusite to kyanite

- Metamorphic change occurs slowly in the solid state
- Several processes are at work
 - 3. **Neocrystallization** New minerals of different composition

- Metamorphic change occurs slowly in the solid state
- Several processes are at work
 - 4. Pressure solution Mineral grains partially dissolve

- Metamorphic change occurs slowly in the solid state
- Several processes are at work
 - 5. Plastic deformation Mineral grains soften and deform

Causes of Metamorphism

- The agents of metamorphism are...
 - Heat (T)
 - Pressure (P)
 - Hot fluids (Chemical composition)
 - Differential stress

Causes of metamorphism: Temperature and pressure

- T and P <u>both</u> increase with depth
- Mineral stability is highly dependent upon T and P
- Mineral crystals grow larger
- Some minerals convert to new minerals

Causes of metamorphism: Confining pressure

- Caused by weight of overlying rocks, increases with depth
- Acts equally in all directions
- No deformation

Copyright © 2008 Pearson Prentice Hall, Inc.

Causes of metamorphism: Differential stress

- Caused by plate tectonic forces, like continental collisions
- Pressure that is greater in one direction than others
- Rocks can become highly deformed

B. Differential stress

Copyright © 2008 Pearson Prentice Hall, Inc.

Causes of metamorphism: Fluids

- Most rocks contain pore fluids
- These fluids enhance metamorphism, by:
 - Speeding up chemical reactions:
 - Recrystallization
 - Growth of new minerals
 - Influencing melting temperature

Two subdivisions of metamorphic rocks

- Foliated Has a throughgoing planar fabric
 - Subjected to differential stress
 - Has a significant component of platy minerals
 - Classified by composition, grain size, and foliation type

- Nonfoliated No planar fabric evident
 - Crystallized without differential stress
 - Comprised of equant minerals only
 - Classified by mineral composition

Non-foliated metamorphic rocks

- Marble
 - Metamorphosed limestone
 - Mineralogy still is calcite
 - Larger, interlocking crystals

- Quartzite
 - Metamorphosed quartz sandstone
 - Mineralogy still is quartz
 - Quartz grains fuse together

- Can be broadly classified by type of foliation and parent rock composition (less important)
- As metamorphic grade (T and P) increases, rock type will change:
 - Slate
 - Phyllite
 - Schist
 - Gneiss

Increasing metamorphic grade

• Parent rocks can vary (shale, siltstone, granite, etc...)

Copyright © 2016 W. W. Norton & Company, Inc.

Copyright © 2016 W. W. Norton & Company, Inc.

Foliated metamorphic rock: Slate

- Fine clay, low-grade metamorphic shale
 - Has a distinct foliation called slaty cleavage
 - Develops by parallel alignment of platy clay minerals
 - Slaty cleavage oriented perpendicular to compression
 - Slate breaks along this foliation creating flat sheets

Foliated metamorphic rock: Phyllite

- Fine mica-rich rock
 - Formed by low- to medium-grade alteration of slate
 - Clay minerals neocrystallize into tiny micas
 - Micas reflect a satiny luster

Foliated metamorphic rock: Schist

- Fine or coarse rock with larger micas
 - Medium- to high-grade metamorphism
 - Has a distinct foliation called schistosity
 - Parallel alignment of large mica crystals
 - Micas are visible because they have grown at higher T
 - Schist often has other minerals due to neocrystallization. e.g. garnet

OESIS 2004.

Foliated metamorphic rock: Gneiss

- Has a distinct banded foliation
 - Light bands of felsic minerals (quartz and feldspars)
 - Dark bands of mafic minerals (biotite or amphibole)
- During higher grades of metamorphism, ion migration results in the segregation of minerals

Metamorphic Grade: A measure of metamorphic intensity

Main types of metamorphism

Contact metamorphism

• Regional metamorphism

Burial metamorphism

Hydrothermal metamorphism

Main types of metamorphism

- Contact metamorphism
 - High temperatures caused by igneous intrusions (magma)
 "bake" surrounding rocks
- Regional metamorphism
 - Metamorphism of an extensive area of the crust, associated with high temperatures and pressures at convergent plate boundaries (subduction zones & continental collisions)

Burial metamorphism

 Burial of rocks by thick accumulations of sediment increase the temperature & pressure and cause low-grade metamorphism

Hydrothermal metamorphism

 Chemical alteration by hot, metal rich fluids associated with igneous activity (most commonly at mid-ocean ridges)

Contact metamorphism

Contact metamorphism

Contact metamorphism

Regional metamorphism

Regional metamorphism

Copyright © 2008 Pearson Prentice Hall, Inc.

Hydrothermal metamorphism

Hydrothermal metamorphism

Copyright © 2008 Pearson Prentice Hall, Inc.

Metamorphic rocks reflect plate tectonic setting

Where will you get metamorphic rock forming?

Label the areas where you will have different mineral assemblages due to:

Low T, low P (where you might get thick sequences of sediment)

- Low T, high P
- High T, Iow P
- High T, high P

Metamorphic rocks reflect plate tectonic setting

Copyright © 2008 Pearson Prentice Hall, Inc.

Metamorphic facies

Metamorphic facies

Copyright © 2016 W. W. Norton & Company, Inc.

Continental Shields

Much of the "continental basement" consists of metamorphic rock "shields" – the core of ancient mountain chains!

