

Lecture 6 - Igneous Rocks and Volcanoes

Learning objectives

- Understand and be able to predict where and why magma will be forming at different tectonic settings
- Understand the factors controlling magma composition and make predictions about the composition of magma at different tectonic settings
- Be able to explain the type of materials produced by igneous activity and classify types of igneous rock
- Assess the type of volcanic hazards likely to occur at different tectonic settings

The Rock Cycle

What is magma made of?

- Liquid portion = melt (mobile ions e.g. Si, O, Fe, Mg, Ca, Na)
- Solids = silicate minerals
- Dissolved gases (volatiles) in the melt, including water vapor (H₂O), carbon dioxide (CO₂), and sulfur dioxide (SO₂)

Eruption as lava or ash

Forming Igneous Rocks

Forms magma chamber (solidifies or rises)

Accumulates into rising magma body

Partial melting of source

Changing conditions to create melt

How could changing conditions cause a rock at point A to melt?

How could changing conditions cause a rock at point C to melt?

Effect of water on melting

What happens to a hot, dry rock at point E when a small amount of water is added?

Magma forms in special settings that melt existing rocks.

Melting is caused by...

- 1. Pressure decrease
- 2. Temp increase
- 3. Addition of water

• Pressure decrease

Decompression melting beneath a rift

• Temperature increase

Magma Compositions

- There are four major magma types based on silica (SiO₂) percentage
 - Felsic (feldspar and silica)
 - Intermediate
 - Mafic (Mg and Fe-rich)
 - Ultramafic

66 to 76% SiO_2 52 to 66% SiO_2 45 to 52% SiO_2 38 to 45% SiO_2

Magma Compositions

- Composition controls magma density, T, and viscosity
 - Silica-rich = more viscous (like syrup)
 - Silica-poor = less viscous (like water)
- These characteristics govern eruptive style

Туре	Density	Temperature	Viscosity
Felsic	Very low	Very low (600 to 850°C)	Very High: Explosive eruptions.
Intermediate	Low	Low	High: Explosive eruptions.
Mafic	High	High	Low: thin, hot runny eruptions.
Ultramafic	Very high	Very high (up to 1300°C)	Very low.

Magma Variation

Why are there different magma compositions?

- 1. Depends on the **source rock**
- 2. That rock probably only partially melts
- 3. Magma will **evolve** over time by:
 - Fractional crystallization
 - Assimilation (when magma will melt and incorporate surrounding host rock)
 - Mixing (when 2 magmas of different composition mix)

1. Source rock

- Composition of a melt will depend on the source rock
- For example different magmas form depending on whether magma is derived from the mantle, ocean crust or continental crust
 - Mantle = ultramafic
 - Ocean lithosphere = mafic
 - Continental lithosphere = intermediate/felsic

2. Partial Melting

- Rocks rarely melt completely
- Instead, only a portion of the rock melts
 - Silica-rich minerals melt first
 - Silica-poor minerals melt last

Reminder: Silicate Minerals

- Silica tetrahedra link together by sharing oxygen molecules
- More shared oxygen = lower Si:O ratio; governs...
 - Melting temperature
 - Mineral structure and cations present
 - Susceptibility to chemical weathering

Type of Silicate Structure	Formula	Si:O Ratio
Independent Tetrahedra	SiO ₄	0.25
Double Tetrahedra	Si ₂ O ₇	0.29
Ring Silicates	Si ₆ O ₁₈	0.33
Single Chains	SiO ₃	0.33
Double Chains	Si ₄ O ₁₁	0.36
Sheet Silicates	Si ₂ O ₅	0.40
Framework Silicates	SiO ₂	0.50

Bowen's Reaction Series

- Minerals solidify (and melt) in a specific series
 - Continuous Plagioclase changed from Ca-rich to Na-rich
 - Discontinuous Minerals that solidify in a narrow T range

Group Question

• Which of these would represent a graph of the silica content of a magma from rock that melts as temperature increases?

2. Partial Melting

- Rocks rarely melt completely
- Instead, only a portion of the rock melts
 - Silica-rich minerals melt first
 - Silica-poor minerals melt last
- Partial melting, then, yields a more silica-rich magma than the source rock

3a. Fractional Crystallization

- As magma cools, early crystals settle by gravity
- Not all minerals crystallize at the same temperature
- Melt composition changes as a result
 - Fe, Mg, and Ca are removed in early settled solids
 - Si, Al, Na, and K remain in melt and increase in abundance

Bowen's Reaction Series

- Minerals solidify (and melt) in a specific series
 - Continuous Plagioclase changed from Ca-rich to Na-rich
 - Discontinuous Minerals that solidify in a narrow T range

How would the compositions of the melt and the solid rock change through time as you:

1. take a mafic rock and gradually melt it

2. take a mafic magma and cool it gradually

Solid:

Solid:

Melt:

Melt:

3a. Fractional Crystallization

- Felsic magma can evolve from mafic magma.
 - Progressive removal of mafics depletes Fe, Mg, and Ca.
 - Remaining melt becomes enriched in Na, K, Al, and Si.

3b. Assimilation

- Magma melts the country rock it passes through
- Blocks of country rock/host rock (xenoliths) fall into magma
- Assimilation of these rocks alters magma composition

3c. Magma Mixing

- Different magmas may mix in a magma chamber
- The result combines the characteristics of the two magmas
- Often magma mixing is incomplete, resulting in blobs of one rock type suspended within the other

Eruption as lava or ash

Forming Igneous Rocks

Forms magma chamber (solidifies or rises)

Accumulates into rising magma body

Partial melting of source

Magma Migration

- Magma moves by...
 - Injection into cracks
 - Melting overlying rocks
 - Squeezed by overlying weight

Not to scale

Not to scale

Extrusive vs Intrusive igneous rocks

Rocks formed from lava = extrusive or volcanic rocks

Rocks formed from magma at depth = intrusive or plutonic rocks

Extrusive and intrusive igneous environments

Copyright © 2008 Pearson Prentice Hall, Inc.

From magma to igneous rocks

 Cooling of magma (or lava) results in the systematic arrangement of ions into orderly patterns = crystallization

How do we work out from the rock how quickly it cooled?

What factors do you think might affect the rate of cooling?

Intrusive vs Extrusive igneous rocks

Which of these is an extrusive rock?

Group Question

• Which of these would cause magma to cool down more slowly?

- a) Shallower depth
- b) Larger volume
- c) Presence of water and ice
- d) Longer, thinner shape

How fast magma cools depends on:

- Size
- Presence of ground water/ice

Extrusive and intrusive igneous environments

Copyright © 2008 Pearson Prentice Hall, Inc.

Crystalline Igneous Rock Classification

- Classification is based upon composition and texture
 - Composition Felsic, intermediate, mafic, and ultramafic
 - Texture Fine (aphanitic);
 coarse (phaneritic)

Eruption as lava or ash

Forming Igneous Rocks

Forms magma chamber (solidifies or rises)

Accumulates into rising magma body

Partial melting of source

Magma Compositions

- Composition controls magma density, T, and viscosity
 - Silica-rich = more viscous (like syrup)
 - Silica-poor = less viscous (like water)
- These characteristics govern eruptive style

Туре	Density	Temperature	Viscosity
Felsic	Very low	Very low (600 to 850°C)	Very High: Explosive eruptions.
Intermediate	Low	Low	High: Explosive eruptions.
Mafic	High	High	Low: thin, hot runny eruptions.
Ultramafic	Very high	Very high (up to 1300°C)	Very low.

Main types of volcano

Stratovolcano

Shield volcano

http://www.youtube.com/watch?v=xExdEXOaA9A&feature=fvwrel

Question

What type of magma would form each type of volcano?

shield volcano

stratovolcano

A) IntermediateB) FelsicC) MaficD) Mafic/Felsic

mafic/felsic intermediate/mafic felsic/intermediate intermediate

Main types of volcano

Stratovolcano – large (1-10 km across), layers of lava and pyroclastics, explosive, intermediate magma but sometimes felsic and mafic e.g. Mt St Helens, Mt Fuji

Shield volcano – large (10s of km across), layers of lava flows, mafic magma, non-explosive e.g. Kilauea, Hawaii

http://www.youtube.com/watch?v=xExdEXOaA9A&feature=fvwrel

Volcanic Materials

- The products of volcanic eruption take three forms:
 - 1. Lava flows Molten rock that moves over the ground.
 - **2.** Pyroclastic debris fragments blown out of a volcano.
 - 3. Volcanic gases Volatiles that exit a volcano.

2. Pyroclastic (volcaniclastic) deposits

- Accumulations of fragmented igneous material
 - Pyroclastic debris
 - Pre-existing rock fragments
 - Landslide debris
 - Mudflows

Tephra and Volcanic Ash

Eruption column = mixture of gas and pyroclasts that rises rapidly above the volcano

Lahars

http://www.youtube.com/watch?v=kznwnpNTB6k

• Rhyolite tuff

• Pumice

• Obsidian

3. Volcanic Gases

- Up to 9% of magma may be gas (H2O, CO2, SO2)
- Gases are expelled as magma rises (P drops)
- Rate of gas escape controls eruption violence
- Gas bubbles in rock are called vesicles

1. Lava Flows

How dangerous do you think lava flows are to human populations?

• Rhyolite

• Basalt

Extrusive and intrusive igneous environments

Copyright © 2008 Pearson Prentice Hall, Inc.

• Granite

• Gabbro

• Peridotite

Plate tectonics and volcanism

- At each type of location:
- What is melting to make up the magma and so what type of magma do you think you will get?
- What type of intrusive vs extrusive rock will you therefore see?
- What type of volcano will likely form?
- What volcanic hazards would local populations experience?

Westeros map activity

- Where is magma formation and volcanism occurring on your map?
- Which of the 3 mechanisms of magma formation is likely responsible in each case?
- What type of igneous rocks would you get in each location?

Plate tectonics and volcanism

FIGURE 5.11

t (M) = Mid-ocean ridge

Continental Hot-Spot Volcanoes

- Yellowstone Eruption ~ 640 Ka created a 100 km caldera.
 - 1,000 times more powerful than Mt. St. Helens
 - Magma beneath the caldera continues to fuel geysers

Large Igneous Provinces

Very large accumulations of igneous rocks (greater than 100,000 km²) in a short geological time (few million years or less)

Looking at rocks under the microscope - igneous

Plane polarized light

Cross polarized light

Color

- In PPL (opaque?, pleochroic?)
- In XPL (birefringence? Isotropic Twinning?Characteristic shape?
- Texture size of crystals, alteration?

