Lecture 13 – Global change

- What is Global Change?
- What drives Global Change?

- What is Global Change?
- What drives Global Change?
 - Solid earth
 - Atmosphere
 - Life
 - Continents
 - Sea level
 - Rocks
 - Biogeochemical
 - Hydrologic
 - Carbon

- What is weather?
- What is climate?

- Transformations or modifications of physical or biological components of Earth system
- Gradual vs catastrophic change
- Unidirectional vs cyclic changes

An entire system

Copyright @ 2016 W. W. Norton & Company, Inc.

Steady State

- What is steady state?
- What does thermodynamics say about Earth's future?

Entropy

- Heat death of the universe!
- Each time a reaction happens, some of its energy is lost to entropy.
- Eventually all energy which could be used for work will be lost.

Geologic/Universe time is not human time

Copyright @ 2016 W. W. Norton & Company, Inc.

Geologic/Universe time is not human time

Copyright © 2016 W. W. Norton & Company, Inc.

Geologic/Universe time is not human time

Copyright © 2016 W. W. Norton & Company, Inc.

Measuring sea level

- What is 'sea level'?
- How do we measure it?

Examples of tide gauge records

Isostatic vs eustatic sea level change

• Isostatic (local) sea level varies due to:

• Eustatic (global) sea level varies due to:

Isostatic vs eustatic sea level change

- Isostatic (local) sea level varies due to:
 - Movement of land surface e.g. loading, plate tectonics
 - Atmospheric pressure
 - Ocean currents
 - Temperature of local water currents
- Eustatic (global) sea level varies due to:
 - Change in mass of ocean water e.g. ice sheet melting, or increased evaporation
 - Change in volume of ocean basins (over millions of years)
 - Density changes of water (thermal expansion or contraction)

Where would be the best place to measure global sea level changes?

Isostatic sea level change: Plate tectonics

- Plate boundaries sometimes occur close to the edges of continents
- Some areas uplifting = local sea level fall
- Some areas subsiding = local sea level rise
- Earthquakes result in sudden changes in sea level

Isostatic sea level change: Plate tectonics

e.g. 3m rise in the land level after 8.0 magnitude earthquake in Solomon islands in 2007 left huge areas of coral reef exposed

Photo credit: Herald Sur

Examples of tide gauge records

Which of these locations might have experienced an earthquake?

Observed eustatic (global) sea level rise

Reconstructed sea level for past 300 years accounting for isostatic factors

Future sea level rise

High End (average = 89 cm)

Greenland Ice Sheet

- 1.7 million km²
- Thickness ~ 2km
- Volume ~ 2.27 million km³
- Sea level rise equivalent of 6.5 m
- Ice up to 110,000 years old (maybe a bit older)

Greenland Ice Sheet

Antarctic Ice Sheet

Shape of the Antarctic ice surface

- 12.3 million km²
- Thickness = 2 km
- Volume ~ 26.5 million km³
- Sea level rise equivalent of up to 73m
- Ice up to 1 million years old

Antarctic Ice Sheet

How do we work out how stable the Antarctic ice sheet is?

· First geological drilling through an ice shelf.

Recovered 1284.74 meters of sediment and rock core; 98% recovery.

DRILL RIG

of ice ICE 'PLATFORM'

WATER

RISER & STRING

ROCK &

SEDIMENT

85 meters

860 meters

of water

1285 meters

Recovered

- Age established as ~13 Million years old at base of hole.
- Observed ~60 glacial-interglacial cycles over last 6 Million years.
- · Thick sequences of diatoms recovered indicating open water at site.
- · Established chronology for seismic data in Victoria Land Basin.

http://www.andrill.org/st

Copyright © 2016 W. W. Norton & Company, Inc.

Global climate change

• Has happened repeatedly over Earth's history

"The Climate System"

Characterized by CHANGE

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

"The Climate System"

Characterized by CHANGE

Copyright © 2016 W. W. Norton & Company, Inc.

Copyright © 2016 W. W. Norton & Company, Inc.

Today, glaciers extend only partway down the side valleys. Lateral moraine Toe today **Toe during** Little Ice Age

Copyright © 2016 W. W. Norton & Company, Inc.

- Instrumental Record (recent, ~1800s to present)
- 2. Geologic Record
 - fossils
 - landscape features (sand dunes, dry lakes/rivers, moraines etc)
- 3. Proxy Records

"records of natural events that are controlled by, and closely mimic, climate"

Geologic Record

Geologic Record

T

Past Climate: Proxy Records

Natural "layered" records e.g.

- a) Tree rings
- b) Lake/ocean sediment
- c) Ice cores
- d) Others include cave deposits, corals etc

http://www.theage.com.au/news/national/great-barrier-reef-hurt-byfarming/2007/05/31/1180205427882.html

(1996)

www.cr.nps.gov/worldheritage/caca.htm

http://www.ncdc.noaa.gov/paleo/pubs/partin200 7/stalagmite.jpg Evaporating water

Three stable oxygen isotopes: ¹⁶O ¹⁷O ¹⁸O

How does evaporation work?

Evaporating water

Which water will require more energy to evaporate? H₂¹⁶O H₂¹⁷O H₂¹⁸O

Ocean δ^{18} O record

Ice core records: Antarctica

Ice core records: Greenland

Why climate changes

- 1. Variations in solar output
- 2. Distribution of continents, mountains and oceans
- 3. Surface characteristics
- 4. Changes in greenhouse gas concentrations
- 5. Aerosols affect transmission and absorption of solar and infrared radiation
- 6. Changes in Earth's orbit (Milankovitch cycles)
- 7. Feedback processes: positive = amplifying, negative = stabilizing

History of climate over last 100 Myrs

Earth is presently in a cool period – dark bands show times when large ice sheets were present on continents.

However, during much of Earth's history, there is no evidence for ice ages – warmer oceans, warmer conditions and higher sea levels.

Middle Cretaceous – 100 Myrs ago

Around 100 million years ago

Antarctica during Cretaceous

Last 65 million years

Last 2 Myrs

Shows cold glacial (blue) and warm interglacial (yellow) periods

Ice ages every ~100,000 years for the most recent 800,000 years with gradual cooling then rapid warming

Climate changes due to Milankovitch cycles and amplifying climate feedbacks e.g. increased CO₂

Ice core records and the carbon cycle

Case study: Paleocene-Eocene Thermal Maximum

Learning from the past: Paleocene-Eocene Thermal Maximum

Learning from the past: Paleocene-Eocene Thermal Maximum

	PETM	Current Warming
Cause	Continental drift, volcanoes, methane hydrate melting, fires, permafrost melting	Anthropogenic burning of fossil fuels (oil, coal, natural gas, etc)
CO ₂ emissions	Around 5 billion tons per year	At least 30 billion tons per year
Rate of warming	0.025°C per 100 years	1 to 4°C per 100 years
Environmental impact	Ocean circulation reversed, oceans acidified, permafrost melted, peatlands and forests burned in wildfires	Observed impacts: significant sea ice decline, extreme drought, more wildfires, increase in glacier melt, more catastrophic floods, ocean acidification, sea level rise, shoreline erosion Potential impacts: degraded air and water quality, permafrost melting, global ocean circulation changes, more violent winter storms and spring tornado seasons, more intense hurricanes
Ecosystem & human impact	Migration of land mammals, extinction of some benthic foraminifera, coral bleaching	Observed impacts: Famine and malnutrition due to drought, coral bleaching, species endangerment (e.g. polar bears, marine turtles, North Atlantic whales, giant pandas, orangutans, elephants) Potential impacts: increased mortality from extreme weather and malnutrition, increase in disease vectors, decrease in agricultural yield, mass wildlife migration and extinction, total societal collapse

What we've learned from paleoclimate

- World has been warmer and colder than today in Earth's history
- But... human civilization is very much "adapted" to the current, very stable climate
- The RATE of climate change over the next 100 years is greatest threat likely 10 times faster than any other change in the last 65 million years

Interactions between geosphere and rest of Earth system

Copyright © 2016 W. W. Norton & Company, Inc.

Interactions between geosphere and rest of Earth system

Copyright © 2016 W. W. Norton & Company, Inc.

Clathrate Hydrates

Clathrate Hydrate

Have we reached a point of no return?

Who cares?

Will 1 day of over eating have health implications?

Will 1 day of over spending have wallet implications?

Will 1 day of over eating have health implications?

Copyright © 2016 W. W. Norton & Company, Inc.

Also ozone layer

Total ozone (Dobson units)

