Introduction to Physical Geology (GEOL I)

Dr. Ryan J. McCarty

Science and Learning

How to learn

Learning new things requires some work

Best way to learn new things is build on things you already know

Try to tie strings between class topics and your favorite subjects

Spread out learning

Repeat (practice) the material (It may seem silly reading the same stuff over again, but that's what brains need to learn!)

Be effective with your time (always do what works best for you)

What is a Science?

Idea generation with the support of evidence.

Three ways of doing this: Deductive, Inductive, Abductive

What is Engineering? Problem solving with the support of evidence.

Deductive reasoning:

The scientific method uses deduction to test a hypothesis.

Pennies have a copper exterior.

This coin is a penny.

This coin is coated in copper!

Question
Hypothesis
Experiment
Analysis
Conclusions
Share

Inductive reasoning:

I tested a jar with 89 pennies.

All of them had a copper shell with a zinc center.

All pennies must have a copper shells and zinc centers.

Abductive reasoning:

An incomplete set of observations is used to determine the most likely cases:

Yesterday I left 89 pennies in the jar in the bedroom. Mr. Meowington was visting and spent the night in the bedroom. Today the jar was knocked over, and there are no more pennies.

Mr. Meowington has decreased his net worthlessness by \$ 0.89.

7	Buisness
3	Computer Science
3	Environmental Science
3	Film
3	Undecided
2	History
1	Anthropology
1	Communications
1	Engineering
1	English
1	Graphic Design
1	Journalism
1	Political Science
1	Psychology
1	Recreation and Leisure
	I Geology

Business cat does not recommend

Purrcrastination

The place businesses go to for solutions to their hardest problems they can't solve?

Managent Consultants

McKinsey&Company

About half business people who can speak the buisness language, and half scientists/engineers who are just really good with data and drawing conclusions.

How to make a graph/how to read a graph

How to make a graph/how to read a graph

Are things the same or different?

How different are they?

Can we make a guess about data we dont have?

Sea Level at Charchanga - Bangladesh (1980-2000)

Source: University of Hawaii Sea Level Centre / Bangladesh Inland Water Transport Authority (BIWTA) - 2014

Making a Universe

After the first 20 minunets of the big bang

H, He, Li, Be

100 or so million years later, First (and giant) stars form

After the first 20 minunets of the big bang

H, He, Li, Be

Fusion happens in stars

Type of H

Type of H

Supernovas, Kilonovas

What is gravity?

Law of gravity says that masses are attracted to each other.

Just a description of what is observed.

Einstein's gravitational theory describes why masses are attracted to each other, and predicted gravity waves.

The theory try's to describe why something happens.

Hypothesis is grounded in the experiment:

If gravity waves exist, they should effect space time,

and we should be able to observe this

https://www.nytimes.com/video/science/10000004200661/what-are-gravitational-waves-ligo-black-holes.html

Sharing results is critical to science: Not everyone agrees with every result.

Ideally results are reproducible Records are kept so that results can be reproduced

Modern science depends on trust and distrust across scientists sharing of information

Forming the earth

Why is the composition of the Earth so different on the crust?

Crust Only

Entire Earth

Why didn't all the elements separate out?

Crust Only

Entire Earth

Na₂B₄O₇·5H₂O

Can save the day/play on stage

Liquid

Solid

Liquid

Vapor

Liquid

Vapor

Solid

Na₂B₄O₇·5H₂O

Melting around 200 C (392 F)

Na₂B₄O₇·5H₂O

Melting around 200 C (392 F)

Na₂B₄O₇ ·5H₂O

Melting around 200 C (392 F)

Warm it up

Melting

Evaporation

Cooking up Geology (Chemistry and Formulas)

Building Earth, a bit like cooking

Basic ingredients

Each dish

Full meal

Building the earth, a bit like cooking

Basic ingredients

Atoms (elements)

Each dish

Minerals

Full meal

Rocks

Atoms don't look like this!

Earth electron cloud

Nucleus of an atom has protons and neutrons (How heavy the atom is) Shell of the atom has electrons (Most all of the atoms properties)

Electrons order themselves into shells

This is how physical chemists think about electron shells

This is how materials chemists think about electron shells

Hard sphere model of an atom

This is a big table! And in geology we see quite a bit of it. We need a good way to break it down

Charge (geology always adds to zero)

Blue = Positive, Red = Negative

Charge (geology always adds to zero)

Blue = Positive, Red = Negative

Size

Thinking Diversity

In cooking:

How do we measure ingredients in the United States? How do they measure ingredients in Europe?

How do scientists measure ingredents?

Since most of geology deals with Blue = Positive, Red = Negative

Talking geology in terms of atoms

Chemical formula (A bit like a recipe for cooking)

Boiled rice recipe

I cup rice

2 cups water

Writing a chemical formula for boiled rice

Rice, Water₂

How much mineral? (not too important)

Only the ratios are inportant

Rice, Water₂

Rice_{0.5} Water

2(Rice, Water₂)

Coconut rice recipe
I cup rice
2 cups water
I/2 cup coconut

Writing a chemical formula for boiled rice

Rice, Water, Coconut_{0.5}

Rice₄Water₈Coconut₂

We know the recipie!

Coconut rice recipe
I cup rice
2 cups water
I/2 cup coconut

Rice_{2.003} Water, Coconut_{0.992}

We know the recipie!

Coconut rice recipe
I cup rice
2 cups water
I/2 cup coconut

$$Rice_{(2.003 \div 2)} Water, Coconut_{(0.992 \div 2)}$$

We know the recipie!

Coconut rice recipe
I cup rice
2 cups water
I/2 cup coconut

Sometimes it is very difficult to know the whole story

We know the recipie!

Coconut rice recipe
I cup rice
2 cups water
I/2 cup coconut

Rice_{1.002} Water₂ Coconut_{0.496}

Comma means either one or both

Mg²⁺ or Fe²⁺

Canola oil, or Corn oil, or Avocado oil

Canolaoil or Cornoil or Avocadooil

 $Canola^{oil}_{\text{(one cup worth)}} \text{ or } Corn^{oil}_{\text{(I)}} \text{ or } Avocado^{oil}_{\text{(I)}}$

	EPMA Results 🖈 🖿 File Edit View Insert Format Data Tools Add-ons Help All changes saved in Drive						
		\$ % .0 _← .00 <u></u> 12	23 - Arial	- 10 -	В І 5	<u>A</u> → 🖫	- <u>∃∃</u> - More -
fx							
	А	В	С	D	E	F	G
31							
32	Group 19	С	0	Si	S	Fe	
33	1	peak	peak	0	0	0	
34	2	no peaks	no peaks	0	0	0	
35	3	no peaks	no peaks	0	0.501	0.249	
36	4	Large peak!	Large peak!	0	0	0	
37	Note	The lab tech says the Ele	ectron probe micro	analysis machine	e cannot look at H	lydrogen, so inste	ad she decided to k
38							
39	McCartys Minerals	О	Si	Fe	Mg	Ni	
40	1	peak	0.329	0.083	0.594	0.007	
41	2	no peak	0	0.008	0	0	
42							
43							
44	<	11					
	+ Sheet1						

39	McCartys Minerals	0	Si	Fe	Mg	Ni
40	1	peak	0.329	0.083	0.594	0.007
41	2	no peak	0	0.008	0	0

$$Mg_{0.594}Fe_{0.083}Ni_{0.007}Si_{0.329}O_{?????}$$

39	McCartys Minerals	О	Si	Fe	Mg	Ni
40	1	peak	0.329	0.083	0.594	0.007
41	2	no peak	0	0.008	0	0

$$Mg_{0.594}Fe_{0.083}Ni_{0.007}Si_{0.329}O_{?????}$$

Really want Si to be close to I (not 0.329)
Because if Si is close to I, then O can be set to 4

39	McCartys Minerals	O	Si	Fe	Mg	Ni
40	1	peak	0.329	0.083	0.594	0.007
41	2	no peak	0	0.008	0	0

$$Mg_{0.594}Fe_{0.083}Ni_{0.007}Si_{0.329}O_{?????}$$

Really want Si to be close to I (not 0.329)
Because if Si is close to I, then O can be set to 4

39	McCartys Minerals	О	Si	Fe	Mg	Ni
40	1	peak	0.329	0.083	0.594	0.007
41	2	no peak	0	0.008	0	0

$$Mg_{(0.594 \times 3)}Fe_{(0.083 \times 3)}Ni_{(0.007 \times 3)}Si_{(0.329 \times 3)}O_{?????}$$

Si ≈ 1, so O can be set to 4

39	McCartys Minerals	О	Si	Fe	Mg	Ni
40	1	peak	0.329	0.083	0.594	0.007
41	2	no peak	0	0.008	0	0

$$Mg_{0.594}Fe_{0.083}Ni_{0.007}Si_{0.329}O_{?????}$$

For ever x Si

I must have 4 x O

 $0.329 \times 4 = 1.316$

39	McCartys Minerals	0	Si	Fe	Mg	Ni
40	1	peak	0.329	0.083	0.594	0.007
41	2	no peak	0	0.008	0	0

Rice = 0Coconut = 0Water = 0.008

39	McCartys Minerals	О	Si	Fe	Mg	Ni
40	1	peak	0.329	0.083	0.594	0.007
41	2	no peak	0	0.008	0	0

Rice =
$$0$$

Coconut = 0
Water = 0.008

This is not coconut rice!

Minerals

What are the types of bonding?

What are the types of bonding?

Covalent Ionic Van der Waals

Which one is strongest?

Covalent Ionic Van der Waals

Size and bond

and composition

By definition a mineral is:
Naturally occurring
Inorganic
Solid
Crystalline
Ordered internal structure
Definite chemical composition

(Rock = a solid aggregate of minerals)

Ordered structure (crystalline!)

Polycrystalline Ping-Pong balls!

Silicon tetrahedron

Silicon tetrahedron

The Silicon tetrahedron is a basic building block

Minerals are classified based upon the dominant anion

Silicates SiO₄ 4- Rock-forming minerals

Oxides O²- Magnetite, Hematite

Sulfides S⁻ Pyrite, Galena

Sulfates SO₄²⁻ Gypsum

Halides Cl⁻ or F⁻ Fluorite, Halite

Carbonates CO₃²⁻ Calcite, Dolomite

Native elements Cu, Au, C Copper, Gold, Graphite

Carbonates

Primary constituents in limestone and dolostone Calcite (CaCO3) and dolomite CaMg(CO3)2 are the two most important carbonate minerals

Many non-silicate minerals have economic value Examples

Hematite (iron oxide mined for iron ore)
Halite (halide mined for salt)
Sphalerite (sulfide mined for zinc ore)
Native copper (native element mined for copper)

By definition a mineral is:
Naturally occurring
Inorganic
Solid
Crystalline
Ordered internal structure
Definite chemical composition

(Rock = a solid aggregate of minerals)

Ordered?

By definition a mineral is:
Naturally occurring
Inorganic
Solid
Crystalline
Ordered internal structure
Definite chemical composition

(Rock = a solid aggregate of minerals)

Type of Silicate Structure	Formula	Si:O Ratio
Independent Tetrahedra	SiO ₄	0.25
Double Tetrahedra	Si ₂ O ₇	0.29
Ring Silicates	Si ₆ O ₁₈	0.33
Single Chains	SiO ₃	0.33
Double Chains	Si ₄ O ₁₁	0.36
Sheet Silicates	Si ₂ O ₅	0.40
Framework Silicates	SiO ₂	0.50

Crystal growth (Adding layer by layer)

Outward crystal growth fills available space

Often the resulting crystal shape is governed by surroundings

Open space – Good crystal faces grow

Confined space – No crystal faces

Crystals grow by...
Solidification from a melt
Precipitation from solution
Solid-state diffusion
Bio-mineralization
Precipitate from a gas

Crystal structure and chemical composition give each mineral a unique set of physical properties Properties that are useful in identification:

Lustre (metallic/non-metallic)
Streak (colour of mineral as powder)
Hardness (resistance of mineral to scratching)
Specific gravity (density)
Cleavage/Fracture (tendency to break along planes)
Crystal shape
Others e.g. Magnetism, reaction to hydrochloric acid, malleability, taste, smell, elasticity
Color

